PHENobarbital 16.2 MG Oral Tablet

Generic Name: PHENOBARBITAL
Brand Name: Phenobarbital
  • Substance Name(s):
  • PHENOBARBITAL

WARNINGS

WARNING: MAY BE HABIT-FORMING

DRUG INTERACTIONS

Drug Interactions Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital. However, the application of these data to other barbiturates appears valid and warrants serial blood level determinations of the relevant drugs when there are multiple therapies. Anticoagulants. Phenobarbital lowers the plasma levels of dicumarol and causes a decrease in anticoagulant activity as measured by the prothrombin time. Barbiturates can induce hepatic microsomal enzymes resulting in increased metabolism and decreased anticoagulant response of oral anticoagulants (e.g., acenocoumarol, warfarin, dicumarol, and phenprocoumon). Patients stabilized on anticoagulant therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen. Corticosteroids. Barbiturates appear to enhance the metabolism of exogenous corticosteroids, probably through the induction of hepatic microsomal enzymes. Patients stabilized on corticosteroid therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen. Griseofulvin. Phenobarbital appears to interfere with the absorption of orally administered griseofulvin, thus decreasing its blood level. The effect of the resultant decreased blood levels of griseofulvin on therapeutic response has not been established. However, it would be preferable to avoid concomitant administration of these drugs. Doxycycline. Phenobarbital has been shown to shorten the half-life of doxycycline for as long as 2 weeks after barbiturate therapy is discontinued. This mechanism is probably through the induction of hepatic microsomal enzymes that metabolize the antibiotic. If phenobarbital and doxycycline are administered concurrently, the clinical response to doxycycline should be monitored closely. Phenytoin, Sodium Valproate, Valproic Acid. The effect of barbiturates on the metabolism of phenytoin appears to be variable. Some investigators report an accelerating effect, whereas others report no effect. Because the effect of barbiturates on the metabolism of phenytoin is not predictable, phenytoin and barbiturate blood levels should be monitored more frequently if these drugs are given concurrently. Sodium valproate and valproic acid increase the phenobarbital serum levels; therefore, phenobarbital blood levels should be closely monitored and appropriate dosage adjustments made as clinically indicated. CNS Depressants. The concomitant use of other CNS depressants, including other sedatives or hypnotics, antihistamines, tranquilizers, or alcohol, may produce additive depressant effects. Monoamine Oxidase Inhibitors (MAOIs). MAOIs prolong the effects of barbiturates, probably because metabolism of the barbiturate is inhibited. Estradiol, Estrone, Progesterone, and other Steroidal Hormones. Pretreatment with or concurrent administration of phenobarbital may decrease the effect of estradiol by increasing its metabolism. There have been reports of patients treated with antiepileptic drugs (e.g., phenobarbital) who become pregnant while taking oral contraceptives. An alternate contraceptive method might be suggested to women taking phenobarbital.

OVERDOSAGE

Signs and Symptoms – The onset of symptoms following a toxic oral exposure to phenobarbital may not occur until several hours following ingestion. The toxic dose of barbiturates varies considerably. In general, an oral dose of 1 g of most barbiturates produces serious poisoning in an adult. Death commonly occurs after 2 to 10 g of ingested barbiturate. The sedated, therapeutic blood levels of phenobarbital range between 5 to 40 mcg/mL; the usual lethal blood level ranges from 100 to 200 mcg/mL. Barbiturate intoxication may be confused with alcoholism, bromide intoxication, and various neurologic disorders. Potential tolerance must be considered when evaluating significance of dose and plasma concentration. The manifestations of a long-acting barbiturate in overdose include nystagmus, ataxia, CNS depression, respiratory depression, hypothermia, and hypotension. Other findings may include absent or depressed reflexes and erythematous or hemorrhagic blisters (primarily at pressure points). Following massive exposure to phenobarbital, pulmonary edema, circulatory collapse with loss of peripheral vascular tone, cardiac arrest, and death may occur. In extreme overdose, all electrical activity in the brain may cease, in which case a “flat” EEG normally equated with clinical death should not be accepted. This effect is fully reversible unless hypoxic damage occurs. Consideration should be given to the possibility of barbiturate intoxication even in situations that appear to involve trauma. Complications such as pneumonia, pulmonary edema, cardiac arrhythmias, congestive heart failure, and renal failure may occur. Uremia may increase CNS sensitivity to barbiturates if renal function is impaired. Differential diagnosis should include hypoglycemia, head trauma, cerebrovascular accidents, convulsive states, and diabetic coma. Treatment – To obtain up-to-date information about the treatment of overdose, a good resource is your certified Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians’ Desk Reference (PDR). In managing overdosage, consider the possibility of multiple drug overdoses, interaction among drugs, and unusual drug kinetics in your patient. Protect the patient’s airway and support ventilation and perfusion. Meticulously monitor and maintain, within acceptable limits, the patient’s vital signs, blood gases, serum electrolytes, etc. Absorption of drugs from the gastrointestinal tract may be decreased by giving activated charcoal, which, in many cases, is more effective than emesis or lavage; consider charcoal instead of or in addition to gastric emptying. Repeated doses of charcoal over time may hasten elimination of some drugs that have been absorbed. Safeguard the patient’s airway when employing gastric emptying or charcoal. Alkalinization of urine hastens phenobarbital excretion, but dialysis and hemoperfusion are more effective and cause less troublesome alterations in electrolyte equilibrium. If the patient has chronically abused sedatives, withdrawal reactions may be manifest following acute overdose.

DESCRIPTION

The barbiturates are nonselective central nervous system (CNS) depressants that are primarily used as sedative-hypnotics. In subhypnotic doses, they are also used as anticonvulsants. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act. Phenobarbital is a barbituric acid derivative and occurs as white, odorless, small crystals or crystalline powder that is very slightly soluble in water; soluble in alcohol, in ether, and in solutions of fixed alkali hydroxides and carbonates; sparingly soluble in chloroform. Phenobarbital is 5-ethyl-5-phenylbarbituric acid. Phenobarbital is a substituted pyrimidine derivative in which the basic structure is barbituric acid, a substance that has no CNS activity. CNS activity is obtained by substituting alkyl, alkenyl, or aryl groups on the pyrimidine ring. It has the following structural formula: Each phenobarbital tablet contains 16.2 mg, 32.4 mg, 64.8 mg or 97.2 mg of phenobarbital. In addition each tablet contains: colloidal silicon dioxide, lactose monohydrate, magnesium stearate, microcrystalline cellulose and sodium starch glycolate. This is the image of the structual formula for Phenobarbital.

HOW SUPPLIED

Phenobarbital Tablets, USP 16.2 mg are white, round, biconvex, scored tablets, debossed “5011” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5165-21 Bottles of 1000 NDC 0603-5165-32 Phenobarbital Tablets, USP 32.4 mg are white, round, biconvex, scored tablets, debossed “5012” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 30 NDC 0603-5166-16 Bottles of 60 NDC 0603-5166-20 Bottles of 90 NDC 0603-5166-02 Bottles of 100 NDC 0603-5166-21 Bottles of 120 NDC 0603-5166-22 Bottles of 1000 NDC 0603-5166-32 Phenobarbital Tablets, USP 64.8 mg are white, round, biconvex, scored tablets, debossed “5013” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5167-21 Bottles of 1000 NDC 0603-5167-32 Phenobarbital Tablets, USP 97.2 mg are white, round, biconvex, scored tablets, debossed “5014” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5168-21 Bottles of 1000 NDC 0603-5168-32

INDICATIONS AND USAGE

Sedative Anticonvulsant – For the treatment of generalized and partial seizures.

PREGNANCY

Usage in Pregnancy Teratogenic Effects. Pregnancy Category D – See Usage in Pregnancy under WARNINGS. Nonteratogenic Effects. Reports of infants suffering from long-term barbiturate exposure in utero included the acute withdrawal syndrome of seizures and hyperirritability from birth to a delayed onset of up to 14 days (see DRUG ABUSE AND DEPENDENCE ).

NUSRING MOTHERS

Nursing Mothers Caution should be exercised when phenobarbital is administered to a nursing woman, because small amounts of barbiturates are excreted in the milk.

INFORMATION FOR PATIENTS

Information for Patients The following information and instructions should be given to patients receiving barbiturates. The use of barbiturates carries with it an associated risk of psychological and/or physical dependence. The patient should be warned against increasing the dose of the drug without consulting a physician. Barbiturates may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks, such as driving a car or operating machinery. The patient should be cautioned accordingly. Alcohol should not be consumed while taking barbiturates. The concurrent use of the barbiturates with other CNS depressants (e.g., alcohol, narcotics, tranquilizers, and antihistamines) may result in additional CNS-depressant effects.

DOSAGE AND ADMINISTRATION

The dose of phenobarbital must be individualized with full knowledge of its particular characteristics. Factors of consideration are the patient’s age, weight, and condition. Sedation: For sedation, the drug may be administered in single dose of 30 to 120 mg repeated at intervals: frequency will be determined by the patient’s response. It is generally considered that no more than 400 mg of phenobarbital should be administered during a 24-hour period. Adults: Daytime Sedation: 30 to 120 mg daily in 2 to 3 divided doses. Oral Hypnotic: 100 to 200 mg. Anticonvulsant Use – Clinical laboratory reference values should be used to determine the therapeutic anticonvulsant level of phenobarbital in the serum. To achieve the blood levels considered therapeutic in pediatric patients, higher per-kilogram dosages are generally necessary for phenobarbital and most other anticonvulsants. In children and infants, phenobarbital at a loading dose of 15 to 20 mg/kg produces blood levels of about 20 mcg/mL shortly after administration. Phenobarbital has been used in the treatment and prophylaxis of febrile seizures. However, it has not been established that prevention of febrile seizures influences the subsequent development of epilepsy. Adults: 60 to 200 mg/day. Pediatric Patients: 3 to 6 mg/kg/day. Special Patient Population – Dosage should be reduced in the elderly or debilitated because these patients may be more sensitive to barbiturates. Dosage should be reduced for patients with impaired renal function or hepatic disease.

PHENobarbital 16.2 MG Oral Tablet

Generic Name: PHENOBARBITAL
Brand Name: Phenobarbital
  • Substance Name(s):
  • PHENOBARBITAL

WARNINGS

WARNING: MAY BE HABIT-FORMING

DRUG INTERACTIONS

Drug Interactions Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital. However, the application of these data to other barbiturates appears valid and warrants serial blood level determinations of the relevant drugs when there are multiple therapies. Anticoagulants. Phenobarbital lowers the plasma levels of dicumarol and causes a decrease in anticoagulant activity as measured by the prothrombin time. Barbiturates can induce hepatic microsomal enzymes resulting in increased metabolism and decreased anticoagulant response of oral anticoagulants (e.g., acenocoumarol, warfarin, dicumarol, and phenprocoumon). Patients stabilized on anticoagulant therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen. Corticosteroids. Barbiturates appear to enhance the metabolism of exogenous corticosteroids, probably through the induction of hepatic microsomal enzymes. Patients stabilized on corticosteroid therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen. Griseofulvin. Phenobarbital appears to interfere with the absorption of orally administered griseofulvin, thus decreasing its blood level. The effect of the resultant decreased blood levels of griseofulvin on therapeutic response has not been established. However, it would be preferable to avoid concomitant administration of these drugs. Doxycycline. Phenobarbital has been shown to shorten the half-life of doxycycline for as long as 2 weeks after barbiturate therapy is discontinued. This mechanism is probably through the induction of hepatic microsomal enzymes that metabolize the antibiotic. If phenobarbital and doxycycline are administered concurrently, the clinical response to doxycycline should be monitored closely. Phenytoin, Sodium Valproate, Valproic Acid. The effect of barbiturates on the metabolism of phenytoin appears to be variable. Some investigators report an accelerating effect, whereas others report no effect. Because the effect of barbiturates on the metabolism of phenytoin is not predictable, phenytoin and barbiturate blood levels should be monitored more frequently if these drugs are given concurrently. Sodium valproate and valproic acid increase the phenobarbital serum levels; therefore, phenobarbital blood levels should be closely monitored and appropriate dosage adjustments made as clinically indicated. CNS Depressants. The concomitant use of other CNS depressants, including other sedatives or hypnotics, antihistamines, tranquilizers, or alcohol, may produce additive depressant effects. Monoamine Oxidase Inhibitors (MAOIs). MAOIs prolong the effects of barbiturates, probably because metabolism of the barbiturate is inhibited. Estradiol, Estrone, Progesterone, and other Steroidal Hormones. Pretreatment with or concurrent administration of phenobarbital may decrease the effect of estradiol by increasing its metabolism. There have been reports of patients treated with antiepileptic drugs (e.g., phenobarbital) who become pregnant while taking oral contraceptives. An alternate contraceptive method might be suggested to women taking phenobarbital.

OVERDOSAGE

Signs and Symptoms – The onset of symptoms following a toxic oral exposure to phenobarbital may not occur until several hours following ingestion. The toxic dose of barbiturates varies considerably. In general, an oral dose of 1 g of most barbiturates produces serious poisoning in an adult. Death commonly occurs after 2 to 10 g of ingested barbiturate. The sedated, therapeutic blood levels of phenobarbital range between 5 to 40 mcg/mL; the usual lethal blood level ranges from 100 to 200 mcg/mL. Barbiturate intoxication may be confused with alcoholism, bromide intoxication, and various neurologic disorders. Potential tolerance must be considered when evaluating significance of dose and plasma concentration. The manifestations of a long-acting barbiturate in overdose include nystagmus, ataxia, CNS depression, respiratory depression, hypothermia, and hypotension. Other findings may include absent or depressed reflexes and erythematous or hemorrhagic blisters (primarily at pressure points). Following massive exposure to phenobarbital, pulmonary edema, circulatory collapse with loss of peripheral vascular tone, cardiac arrest, and death may occur. In extreme overdose, all electrical activity in the brain may cease, in which case a “flat” EEG normally equated with clinical death should not be accepted. This effect is fully reversible unless hypoxic damage occurs. Consideration should be given to the possibility of barbiturate intoxication even in situations that appear to involve trauma. Complications such as pneumonia, pulmonary edema, cardiac arrhythmias, congestive heart failure, and renal failure may occur. Uremia may increase CNS sensitivity to barbiturates if renal function is impaired. Differential diagnosis should include hypoglycemia, head trauma, cerebrovascular accidents, convulsive states, and diabetic coma. Treatment – To obtain up-to-date information about the treatment of overdose, a good resource is your certified Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians’ Desk Reference (PDR). In managing overdosage, consider the possibility of multiple drug overdoses, interaction among drugs, and unusual drug kinetics in your patient. Protect the patient’s airway and support ventilation and perfusion. Meticulously monitor and maintain, within acceptable limits, the patient’s vital signs, blood gases, serum electrolytes, etc. Absorption of drugs from the gastrointestinal tract may be decreased by giving activated charcoal, which, in many cases, is more effective than emesis or lavage; consider charcoal instead of or in addition to gastric emptying. Repeated doses of charcoal over time may hasten elimination of some drugs that have been absorbed. Safeguard the patient’s airway when employing gastric emptying or charcoal. Alkalinization of urine hastens phenobarbital excretion, but dialysis and hemoperfusion are more effective and cause less troublesome alterations in electrolyte equilibrium. If the patient has chronically abused sedatives, withdrawal reactions may be manifest following acute overdose.

DESCRIPTION

The barbiturates are nonselective central nervous system (CNS) depressants that are primarily used as sedative-hypnotics. In subhypnotic doses, they are also used as anticonvulsants. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act. Phenobarbital is a barbituric acid derivative and occurs as white, odorless, small crystals or crystalline powder that is very slightly soluble in water; soluble in alcohol, in ether, and in solutions of fixed alkali hydroxides and carbonates; sparingly soluble in chloroform. Phenobarbital is 5-ethyl-5-phenylbarbituric acid. Phenobarbital is a substituted pyrimidine derivative in which the basic structure is barbituric acid, a substance that has no CNS activity. CNS activity is obtained by substituting alkyl, alkenyl, or aryl groups on the pyrimidine ring. It has the following structural formula: Each phenobarbital tablet contains 16.2 mg, 32.4 mg, 64.8 mg or 97.2 mg of phenobarbital. In addition each tablet contains: colloidal silicon dioxide, lactose monohydrate, magnesium stearate, microcrystalline cellulose and sodium starch glycolate. This is the image of the structual formula for Phenobarbital.

HOW SUPPLIED

Phenobarbital Tablets, USP 16.2 mg are white, round, biconvex, scored tablets, debossed “5011” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5165-21 Bottles of 1000 NDC 0603-5165-32 Phenobarbital Tablets, USP 32.4 mg are white, round, biconvex, scored tablets, debossed “5012” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 30 NDC 0603-5166-16 Bottles of 60 NDC 0603-5166-20 Bottles of 90 NDC 0603-5166-02 Bottles of 100 NDC 0603-5166-21 Bottles of 120 NDC 0603-5166-22 Bottles of 1000 NDC 0603-5166-32 Phenobarbital Tablets, USP 64.8 mg are white, round, biconvex, scored tablets, debossed “5013” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5167-21 Bottles of 1000 NDC 0603-5167-32 Phenobarbital Tablets, USP 97.2 mg are white, round, biconvex, scored tablets, debossed “5014” and “V” on one side and plain on the reverse side, and supplied as follows: Bottles of 100 NDC 0603-5168-21 Bottles of 1000 NDC 0603-5168-32

INDICATIONS AND USAGE

Sedative Anticonvulsant – For the treatment of generalized and partial seizures.

PREGNANCY

Usage in Pregnancy Teratogenic Effects. Pregnancy Category D – See Usage in Pregnancy under WARNINGS. Nonteratogenic Effects. Reports of infants suffering from long-term barbiturate exposure in utero included the acute withdrawal syndrome of seizures and hyperirritability from birth to a delayed onset of up to 14 days (see DRUG ABUSE AND DEPENDENCE ).

NUSRING MOTHERS

Nursing Mothers Caution should be exercised when phenobarbital is administered to a nursing woman, because small amounts of barbiturates are excreted in the milk.

INFORMATION FOR PATIENTS

Information for Patients The following information and instructions should be given to patients receiving barbiturates. The use of barbiturates carries with it an associated risk of psychological and/or physical dependence. The patient should be warned against increasing the dose of the drug without consulting a physician. Barbiturates may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks, such as driving a car or operating machinery. The patient should be cautioned accordingly. Alcohol should not be consumed while taking barbiturates. The concurrent use of the barbiturates with other CNS depressants (e.g., alcohol, narcotics, tranquilizers, and antihistamines) may result in additional CNS-depressant effects.

DOSAGE AND ADMINISTRATION

The dose of phenobarbital must be individualized with full knowledge of its particular characteristics. Factors of consideration are the patient’s age, weight, and condition. Sedation: For sedation, the drug may be administered in single dose of 30 to 120 mg repeated at intervals: frequency will be determined by the patient’s response. It is generally considered that no more than 400 mg of phenobarbital should be administered during a 24-hour period. Adults: Daytime Sedation: 30 to 120 mg daily in 2 to 3 divided doses. Oral Hypnotic: 100 to 200 mg. Anticonvulsant Use – Clinical laboratory reference values should be used to determine the therapeutic anticonvulsant level of phenobarbital in the serum. To achieve the blood levels considered therapeutic in pediatric patients, higher per-kilogram dosages are generally necessary for phenobarbital and most other anticonvulsants. In children and infants, phenobarbital at a loading dose of 15 to 20 mg/kg produces blood levels of about 20 mcg/mL shortly after administration. Phenobarbital has been used in the treatment and prophylaxis of febrile seizures. However, it has not been established that prevention of febrile seizures influences the subsequent development of epilepsy. Adults: 60 to 200 mg/day. Pediatric Patients: 3 to 6 mg/kg/day. Special Patient Population – Dosage should be reduced in the elderly or debilitated because these patients may be more sensitive to barbiturates. Dosage should be reduced for patients with impaired renal function or hepatic disease.